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/. In-vitro implementation and testing of synthetic RNA devices

Functional de-novo RNA devices

Riboregulators

Prokaryotic gene expression ! Artificial riboregulator system
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Isaacs et al. Nature (2004)

« Rational design and engineering of post-
transcriptional regulation
* Modular riboregulator

Goals and Questions

Optimization / Individual folding \
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Rodrigo et al PNAS (2012)

* Based on trans-activation
‘Newly generated sequences in-silico

T1.4 Model system dependent adaptaticon

T1.1 Maodel designs based on literature review

. » T1.2 Individual model design software

WP1 in silico T1.3 3 Integrated design tool
T1.5 Higher arder circuit designer
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Refi Predicti Rate measurements
efinement rediction Structural data

| V N

r T2.1 in vitro testing of in silico engineered ANAdevs and networks
T2.2 Measuring RNAdev rate constants for in silico studies
WP2 in vifro

E: Ensemble of all possible parameters (SRNA sequences, promoters, growth conditions...)
R: Parameters that provide desirable behaviour in vitro
V: Parameters that provide desirable behaviour in vivo

T2.3 Structural probing and SHAPE experiments

T2.4 New microfluidic tools for characterizing and/or designing
RMNAdevs and networks

T2.5 In vitro SELEX

« Can In-vitro testing accelerate - 7o
in-vivo network engineering? H U

* Rapid debugging of in-silico {mm EM:""%“;MM“&W”
designed RNA devices.

* In-vitro testing and
characterization of in-silico
designed RNA devices

(functionality, rate constants,

T2.4 in viva implementation of in wiro tested RNAdevs
T2.5 Connecting RNAdevs to RNA networks in vivo
T2.6 RNA networks for metabolic engineering

« Joint european project
* Planned synergy
between in-silico, in-vitro
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* Successful implementation in-vivo etc...) and In-vivo
* Allows for modularity
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* The individual components of the
RAJ11 riboregulator are functional in
an in-vitro expression system.
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(with Christophe David, LPN, CNRS)
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 The mMRNA transcribed from the PCR products are
also functional.

Il/. Folding pathway of DNA nanostructures at the single molecule level

Folding rates

* Folding occurs
during a~4° C
temperature
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* Rate of folding of origami built from 10 nM
of M13 scaffold and 40 nM and 160 nM
staples (based on an experiment from
Sobczak et al Science (2012))

Thermodynamics Folding kinetics
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- Provides visuals of the folding process at various  * Visualization of the folding process in isothermal

temperatures.
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* Three folding ‘regimes’ identified after image

analysis.
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conditions.

« Structure without holes obtained within 5 min.

* Fully formed origami observed after 20 min after slow
reorganization.
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